top of page
Gmet Fermenter 2.jpg
5.jpg
16.jpg
Tropfen am Vulkan.jpg
Luftmycel St. griseus.jpg
20220217_152806.jpg
20210802_133546_resized.jpg
20200417_144818_resized.jpg
Halvar-Zelt.jpg

Anaerobic microbial metabolism and enzymology - a treasure trove of novel biocatalysts:
From nature to lab to biotechnology

Elimination of pollutants by anaerobic bacteria
unorthodox biocatalysts for biotechnology_piktogramm.png
from biomass to biogas_piktogramm.png

Latest Publications

elimation_piktogramm.png
7.jpg
19.jpg
15.jpg
8.jpg
6.jpg
20210802_133349_resized.jpg
20200722_130748_resized.jpg

Enzymatic Birch Reduction via Hydrogen Atom Transfer at an Aqua-Tungsten-bis-Metallopterin Cofactor

Carola S. Seelmann, Simona G. Huwiler, Martin Culka, Marc J. F. Strampraad, Till Biskup, Stefan Weber, G. Matthias Ullmann, Volker Schünemann, Peter-Leon Hagedoorn, Antonio J. Pierik, Matthias Boll

The Birch reduction is a widely used synthetic tool to reduce arenes to 1,4-cyclohexadienes. Its harsh cryogenic reaction conditions and the dependence on alkali metals have motivated researchers to explore alternative approaches. In anaerobic aromatic compound degrading microbes, class II benzoyl-coenzyme A (CoA) reductases (BCRs) reduce benzoyl-CoA to the conjugated cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at a tungsten-bis-metallopterin (MPT) cofactor. Though previous structure-based computational studies were in favor of a Birch-like reduction via W(V)/radical intermediates, any experimental evidence for such a mechanism was lacking. Here, we combined freeze-quench and equilibrium electron paramagnetic resonance (EPR) spectroscopic analyses in H2O, D2O, and H217O with redox titrations using wild-type and molecular variants of the catalytic BamB subunit of class II BCR from the anaerobic bacterium Geobacter metallireducens..

bottom of page