top of page
Gmet Fermenter 2.jpg
5.jpg
16.jpg
Tropfen am Vulkan.jpg
Luftmycel St. griseus.jpg
20220217_152806.jpg
20210802_133546_resized.jpg
20200417_144818_resized.jpg
Halvar-Zelt.jpg

Anaerobic microbial metabolism and enzymology - a treasure trove of novel biocatalysts:
From nature to lab to biotechnology

Elimination of pollutants by anaerobic bacteria
unorthodox biocatalysts for biotechnology_piktogramm.png
from biomass to biogas_piktogramm.png

Latest Publications

elimation_piktogramm.png
7.jpg
19.jpg
15.jpg
8.jpg
6.jpg
20210802_133349_resized.jpg
20200722_130748_resized.jpg

Transcriptional regulation of the anaerobic 3-hydroxybenzoate degradation pathway in Aromatoleum sp. CIB

Unai Fernández-Arévalo, Jonathan Fuchs, Matthias Boll, Eduardo Díaz

Phenolic compounds are commonly found in anoxic environments, where they serve as both carbon and energy sources for certain anaerobic bacteria. The anaerobic breakdown of m-cresol, catechol, and certain lignin-derived compounds yields the central intermediate 3-hydroxybenzoate/3-hydroxybenzoyl-CoA. In this study, we have characterized the transcription and regulation of the hbd genes responsible for the anaerobic degradation of 3-hydroxybenzoate in the β-proteobacterium Aromatoleum sp. CIB. The hbd cluster is organized in three catabolic operons and a regulatory hbdR gene that encodes a dimeric transcriptional regulator belonging to the TetR family. HbdR suppresses the activity of the three catabolic promoters (PhbdN, PhbdE and PhbdH) by binding to a conserved palindromic operator box (ATGAATGAN4TCATTCAT). 3-Hydroxybenzoyl-CoA, the initial intermediate of the 3-hydroxybenzoate degradation pathway, along with benzoyl-CoA, serve as effector molecules that bind to HbdR inducing the expression of the hbd genes..

bottom of page