top of page
Gmet Fermenter 2.jpg
5.jpg
16.jpg
Tropfen am Vulkan.jpg
Luftmycel St. griseus.jpg
20220217_152806.jpg
20210802_133546_resized.jpg
20200417_144818_resized.jpg
Halvar-Zelt.jpg

Anaerobic microbial metabolism and enzymology - a treasure trove of novel biocatalysts:
From nature to lab to biotechnology

Elimination of pollutants by anaerobic bacteria
unorthodox biocatalysts for biotechnology_piktogramm.png
from biomass to biogas_piktogramm.png

Latest Publications

elimation_piktogramm.png
7.jpg
19.jpg
15.jpg
8.jpg
6.jpg
20210802_133349_resized.jpg
20200722_130748_resized.jpg

Highly selective whole-cell 25-hydroxyvitamin D3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling

Dennis Kosian, Max Willistien, Ralf Weßbecher, Constantin Eggers, Oliver May, Matthias Boll

The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates..

bottom of page